Detecting and Solving Hyperbolic Quadratic Eigenvalue Problems

نویسندگان

  • Chun-Hua Guo
  • Nicholas J. Higham
  • Françoise Tisseur
چکیده

Hyperbolic quadratic matrix polynomials Q(λ) = λ2A + λB + C are an important class of Hermitian matrix polynomials with real eigenvalues, among which the overdamped quadratics are those with nonpositive eigenvalues. Neither the definition of overdamped nor any of the standard characterizations provides an efficient way to test if a given Q has this property. We show that a quadratically convergent matrix iteration based on cyclic reduction, previously studied by Guo and Lancaster, provides necessary and sufficient conditions for Q to be overdamped. For weakly overdamped Q the iteration is shown to be generically linearly convergent with constant at worst 1/2, which implies that the convergence of the iteration is reasonably fast in almost all cases of practical interest. We show that the matrix iteration can be implemented in such a way that when overdamping is detected a scalar μ < 0 is provided that lies in the gap between the n largest and n smallest eigenvalues of the n × n quadratic eigenvalue problem (QEP) Q(λ)x = 0. Once such a μ is known, the QEP can be solved by linearizing to a definite pencil that can be reduced, using already available Cholesky factorizations, to a standard Hermitian eigenproblem. By incorporating an initial preprocessing stage that shifts a hyperbolic Q so that it is overdamped, we obtain an efficient algorithm that identifies and solves a hyperbolic or overdamped QEP maintaining symmetry throughout and guaranteeing real computed eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elliptic and hyperbolic quadratic eigenvalue problems and associated distance problems

Two important classes of quadratic eigenvalue problems are composed of elliptic and hyperbolic problems. In [Linear Algebra Appl., 351–352 (2002) 455], the distance to the nearest non-hyperbolic or non-elliptic quadratic eigenvalue problem is obtained using a global minimization problem. This paper proposes explicit formulas to compute these distances and the optimal perturbations. The problem ...

متن کامل

Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems

An important class of generalized eigenvalue problems Ax = λBx is those in which A and B are Hermitian and some real linear combination of them is definite. For the quadratic eigenvalue problem (QEP) (λ2A+ λB + C)x = 0 with Hermitian A, B and C and positive definite A, particular interest focuses on problems in which (x∗Bx)2 − 4(x∗Ax)(x∗Cx) is one-signed for all non-zero x—for the positive sign...

متن کامل

Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers

This paper presents a new computational approach for solving the Regularized Total Least Squares problem. The problem is formulated by adding a quadratic constraint to the Total Least Square minimization problem. Starting from the fact that a quadratically constrained Least Squares problem can be solved via a quadratic eigenvalue problem, an iterative procedure for solving the regularized Total...

متن کامل

Algorithms for hyperbolic quadratic eigenvalue problems

We consider the quadratic eigenvalue problem (QEP) (λ2A+λB+ C)x = 0, where A,B, and C are Hermitian with A positive definite. The QEP is called hyperbolic if (x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ Cn. We show that a relatively efficient test for hyperbolicity can be obtained by computing the eigenvalues of the QEP. A hyperbolic QEP is overdamped if B is positive definite and C is positive ...

متن کامل

SOLVING LINEAR SIXTH-ORDER BOUNDARY VALUE PROBLEMS BY USING HYPERBOLIC UNIFORM SPLINE METHOD

In this paper, a numerical method is developed for solving a linear sixth order boundaryvalue problem (6VBP ) by using the hyperbolic uniform spline of order 3 (lower order). Thereis proved to be first-order convergent. Numerical results confirm the order of convergencepredicted by the analysis.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008